Analysis of parameter selections for fuzzy c-means
نویسنده
چکیده
The weighting exponentm is called the fuzzifier that can influence the performance of fuzzy c-means (FCM). It is generally suggested that mA[1.5,2.5]. On the basis of a robust analysis of FCM, a new guideline for selecting the parameter m is proposed. We will show that a large m value will make FCM more robust to noise and outliers. However, considerably large m values that are greater than the theoretical upper bound will make the sample mean a unique optimizer. A simple and efficient method to avoid this unexpected case in fuzzy clustering is to assign a cluster core to each cluster. We will also discuss some clustering algorithms that extend FCM to contain the cluster cores in fuzzy clusters. For a large theoretical upper bound case, we suggest the implementation of the FCM with a suitable large m value. Otherwise, we suggest implementing the clustering methods with cluster cores. When the data set contains noise and outliers, the fuzzifierm1⁄44 is recommended for both FCM and cluster-core-based methods in a large theoretical upper bound case. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Parameter Selections of Fuzzy C-Means Based on Robust Analysis
The weighting exponent m is called the fuzzifier that can have influence on the clustering performance of fuzzy c-means (FCM) and m∈ [1.5,2.5] is suggested by Pal and Bezdek [13]. In this paper, we will discuss the robust properties of FCM and show that the parameter m will have influence on the robustness of FCM. According to our analysis, we find that a large m value will make FCM more robust...
متن کاملFuzzy C-Means Clustering Algorithm for Site Selection of Groundwater Artificial Recharge Areas (Case Study: Sefied Dasht Plain)
Artificial recharge can be an effective method to raise the groundwater table and to resolve the groundwater crisis in Sefid dasht plain. The most important step to successful accomplishment of artificial recharge is locating suitable areas for artificial recharge. Hence this research carried out with purpose of determining suitable areas for artificial recharge in Sefid dasht plain. Slope, sur...
متن کاملFuzzy C-Means Clustering Algorithm for Site Selection of Groundwater Artificial Recharge Areas (Case Study: Sefied Dasht Plain)
Artificial recharge can be an effective method to raise the groundwater table and to resolve the groundwater crisis in Sefid dasht plain. The most important step to successful accomplishment of artificial recharge is locating suitable areas for artificial recharge. Hence this research carried out with purpose of determining suitable areas for artificial recharge in Sefid dasht plain. Slope, sur...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 45 شماره
صفحات -
تاریخ انتشار 2012